Combining Stochastic Uncertainty and Linguistic Inexactness: Theory and Experimental Evaluation of Four Fuzzy Probability Models
نویسندگان
چکیده
Two major sources of imprecision in human knowledge, linguistic inexactness and stochastic uncertainty, are identified in this study. It is argued that since in most realistic situations these two types exist simultaneously, it is necessary to combine them in a formal framework to yield realistic solutions. This study presents such a framework by combining concepts from probability and fuzzy set theories. In this framework four models (Kwakernaak, 1978; Yager, 1979; 1984b; Zadeh, 1968; 1975) that attempt to account for the numeric or linguistic responses in various probability elicitation tasks were tested. The linguistic models were relatively effective in predicting subjects' responses compared to a random choice model. The numeric model (Zadeh, 1968) proved to be insufficient. These results and others suggest that subjects are unable to represent the full complexity of a problem. Instead they adopt a simplified view of the problem by representing vague linguistic concepts by multiple-crisp representations (the a-level sets). All of the mental computation is done at these surrogate levels.
منابع مشابه
FUZZY INFORMATION AND STOCHASTICS
In applications there occur different forms of uncertainty. The twomost important types are randomness (stochastic variability) and imprecision(fuzziness). In modelling, the dominating concept to describe uncertainty isusing stochastic models which are based on probability. However, fuzzinessis not stochastic in nature and therefore it is not considered in probabilisticmodels.Since many years t...
متن کاملJoint Bayesian Stochastic Inversion of Well Logs and Seismic Data for Volumetric Uncertainty Analysis
Here in, an application of a new seismic inversion algorithm in one of Iran’s oilfields is described. Stochastic (geostatistical) seismic inversion, as a complementary method to deterministic inversion, is perceived as contribution combination of geostatistics and seismic inversion algorithm. This method integrates information from different data sources with different scales, as prior informat...
متن کاملAn Optimization Model for Multi-objective Closed-loop Supply Chain Network under uncertainty: A Hybrid Fuzzy-stochastic Programming Method
In this research, we address the application of uncertaintyprogramming to design a multi-site, multi-product, multi-period,closed-loop supply chain (CLSC) network. In order to make theresults of this article more realistic, a CLSC for a case study inthe iron and steel industry has been explored. The presentedsupply chain covers three objective functions: maximization ofprofit, minimization of n...
متن کاملاستفاده از تحلیل پوششی دادههای ناهموار برای ارزیابی تأمینکنندگان، مطالعه موردی: گروه صنعتی ایران ترانسفو
Im this paper, the performance of suppliers is evaluated based on their efficiencies. Evaluation environment is not always precise and we may face imprecise for evaluation indexes values. In this situation, traditional and certain models cannot be employed. For overcoming uncertainty problem, there are different models such as stochastic, statistical, Rough, Fuzzy, etc for solving uncertainty e...
متن کاملA multi-product vehicle routing scheduling model with time window constraints for cross docking system under uncertainty: A fuzzy possibilistic-stochastic programming
Mathematical modeling of supply chain operations has proven to be one of the most complex tasks in the field of operations management and operations research. Despite the abundance of several modeling proposals in the literature; for vast majority of them, no effective universal application is conceived. This issue renders the proposed mathematical models inapplicable due largely to the fact th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Int. J. Approx. Reasoning
دوره 2 شماره
صفحات -
تاریخ انتشار 1988